Visual Interactive Subgroup Discovery with Numerical Properties of Interest

نویسندگان

  • Alípio Mário Jorge
  • Fernando Pereira
  • Paulo J. Azevedo
چکیده

Subgroup discovery consists in finding subsets of individuals from a given population which have distinctive collective properties with regard to one or more properties of interest. The interest of a subgroup can be objectively assessed using appropriate statistics, but it can also be evaluated by a data analyst or domain expert. In this paper we propose an approach to subgroup discovery via distribution rules (a kind of association rules with a probability distribution on the consequent) for numerical properties of interest. The objective interest of the subgroups is measured through statistical goodness of fit tests. The subjective interest of the subgroups can be assessed by the data analyst through a visual interactive subgroup browsing procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A tool for interactive Subgroup Discovery

We describe an approach and a tool for the discovery of subgroups within the framework of distribution rule mining. Distribution rules are a kind of association rules particularly suited for the exploratory study of numerical variables of interest. Being an exploratory technique, the result of a distribution mining process is typically a very large number of patterns. Exploring such results is ...

متن کامل

مقایسه تأثیر سه رویکرد یاد‌دهی ـ یادگیری بر عملکرد یادگیری دانش‌آموزان در درس‌زیست‌شناسی

Present study was designed to investigate the effects of three teaching- learning approaches including discovery, interactive and transmission approaches on the students learning performance in biology lesson. In this quasi- experimental research three experimental groups (N1=60, N2=71, N3=63) were used in order to identify any significant difference between the students learning performance wh...

متن کامل

Eureka! : A Tool for Interactive Knowledge Discovery

In this paper we describe an interactive, visual knowledge discovery tool for analyzing numerical data sets. The tool combines a visual clustering method, to hypothesize meaningful structures in the data, and a classification machine learning algorithm, to validate the hypothesized structures. A two-dimensional representation of the available data allows a user to partition the search space by ...

متن کامل

On the decomposable numerical range of operators

 ‎Let $V$ be an $n$-dimensional complex inner product space‎. ‎Suppose‎ ‎$H$ is a subgroup of the symmetric group of degree $m$‎, ‎and‎ ‎$chi‎ :‎Hrightarrow mathbb{C} $ is an irreducible character (not‎ ‎necessarily linear)‎. ‎Denote by $V_{chi}(H)$ the symmetry class‎ ‎of tensors associated with $H$ and $chi$‎. ‎Let $K(T)in‎ (V_{chi}(H))$ be the operator induced by $Tin‎ ‎text{End}(V)$‎. ‎Th...

متن کامل

Evolutionary Approaches to Visualisation and Knowledge Discovery

Haiku is a data mining system which combines the best properties of human and machine discovery. An self organising visualisation system is coupled with a genetic algorithm to provide an interactive, flexible system. Visualisation of data allows the human visual system to identify areas of interest, such as clusters, outliers or trends. A genetic algorithm based machine learning algorithm can t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006